New Avenues in Survey Data Collection

Comparing the Quality of Text and Voice Answers to Political Attitude Question in Smartphone Surveys

Konstantin Gavras, Jan Karem Höhne, Harald Schoen, Annelies Blom

MASS Workshop, 23.04.2021

Introduction and Background

- Web surveys are a prevailing data collection method
 - Cost- and time-effectiveness and technologically amenable
- The usage of smartphones facilitates new communication channels
- Measuring political attitudes is an important endeavor in social sciences
- Open answers allow to collect rich information about political attitudes (Geer 1988)
- Possible differences between text and voice answer
 - Cognitive information processing (Zaller/Feldman 1992; Lodge et al. 1989)
 - Respondent burden due to answer delivery (Denscombe 2008)

Research Question: Do text and voice answers to open questions on political attitudes differ regarding linguistic and content characteristics?

Methods: Study Design

- We employed 6 open questions:
 - 1 on the most important political issue in Germany
 - 1 on attitudes towards the German Chancellor
 - 4 on attitudes towards German political parties (CDU/CSU, SPD, Greens, and AfD)
- Each question presented individually
- Text and voice conditions preceded by short instructions
- Optimized survey layout
- Experiment conducted in the Omninet Panel (Forsa) in Germany in December 2019 and January 2020

Methods: Text and Voice Requests

- Example: Open question on the German chancellor
- Text condition on the left
 - Next button is not displayed because of space limitations
 - No character limitation
- Voice on the right
 - SurveyVoice (SVoice) tool (Höhne et al. 2021)
 - No recording time limitation

Results: Answer length

^{23.04.2021} * p < 0.05, t-test N_{Text} = 1,414 to 1,453; N_{Voice} = 667 to 695

Results: Lexical structure

Method: Estimate lexical richness (Yule's K), lexical diversity (TTR), and readability (F-KRS)

All differences are significant on p < 0.05

Condition Text

N_{Text} = 1,414 to 1,453; N_{Voice} = 667 to 695 *p < 0.05, t-test 23.04.2021

Results: Sentiment

Method: Sentiment analysis (SentiWS):

 $S = log \frac{pos + 0.001}{|neg| + 0.001}$

23.04.2021

Results: Average number of topics

Method: Structural Topic Models (STM) for identifying and counting topics

*** p < 0.05, t-test**

N_{Text} = 1,279 to 1,371; N_{Voice} = 605 to 664

Discussion & Conclusion

- Longer answers in voice condition: Indicates open narration and more information
- More lexical structure in text answers: Indicates more conscious answering
- Partial evidence for more extreme answers in voice answers: Indicates less social desirability
- More topics in voice answers: Indicates open narration and different information processing
- Only moderate overlap in topics between conditions: Indicates different information processing

\rightarrow Open questions with voice requests are a promising new method

Literature

- Denscombe, M. (2008). The Length of Responses to Open-Ended Questions. Social Science Computer Review, 26(3), 359–368.
- Gavras, K., Höhne J. K. (2020). Evaluating Political Parties: Criterion Validity of Open Questions with Requests for Text and Voice Answers. International Journal of Social Research Methodology, (accepted).
- Gavras, K. L., Höhne, J. K., Schoen, H., & Blom, A., (under review). Innovating the collection of open-ended answers: The linguistic and content characteristics of written and oral answers to political attitude questions. Journal of the Royal Statistical Society (Series A).
- Geer, J. G. (1988). What Do Open-Ended Questions Measure? Public Opinion Quarterly, 52(3), 365-367.
- Höhne, J. K., Gavras, K., & Qureshi, D. (2021). SurveyVoice (SVoice): A JavaScript and PHP-based Guide for Recording Oral Answers in Surveys. http://doi.org/10.5281/zenodo.4280543
- Lodge, M., McGraw, K. M., & Stroh, P. (1989). An Impression-Driven Model of Candidate Evaluation. American Political Science Review, 83(2), 399–419.
- Zaller, J., & Feldman, S. (1992). A Simple Theory of the Survey Response: Answering Questions versus Revealing Preferences. American Journal of Political Science, 36(3), 579–616.

Many thanks for your attention!

Contact: <u>konstantin.gavras@uni-mannheim.de</u> Twitter: @kongavras

Methods: Data and Sample Characteristics

Cross-quotas:	Gender, age, education, and region (2x3x3x2)
Final sample size:	N = 2,402
Gender:	49% female
Age (in years):	Mean = 43
Education:	23% lower education secondary school
	33% intermediate secondary school
	44% at least college preparatory secondary school
Region:	85% West Germany

Chi-square tests reveal no differences between the conditions (text and voice) regarding gender, age, education, and region.

Results: Effective number of topics

Effective Number of Topics (ENT): ENT = $\frac{1}{\sum_{i=1}^{n} t_i^2}$

N_{Text} = 1,279 to 1,371 N_{Voice} = 605 to 664

Text