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Time use in Malawi



Living Standard Measurement Study
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• Face-to-face time-use survey in rural areas
• 24 hour recall-based diary, weekly visits
• Very costly

Goal: alternative data collection for LSMS

• Physical activity trackers (ActiGraph) 
• 14 consecutive days, N=415 (15+years)
• Cheaper, more accurate and objective data 
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Human Activity Recognition (HAR)

Farming Social activities Fetching water

CookingHunting Working for wage



Research question
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Can advances in machine learning be leveraged to 
accurately predict time use from physical activity 
sensor output collected as part of household surveys 
in low-income countries?

 Can we predict time use activities from 
accelerometer data?
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Two Types of Data

ActiGraph GT3X
measures acceleration

Time Use Survey
25 activities
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Time use data

91
 %



Building machine learning models
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Model building pipeline

Preprocessing

• Coupling accelerometer 
data with time-use data 

• Enhancing with available 
background information

Data Cleaning

• Removal of non-wear time
• Excluding 2nd activities
• Time limit (4 am-10 pm)
• Discard correlated vars

Feature Engineering

• 39 features, i.e., 
4 base features (X, Y, Z, Step), 
31 derived features, 
4 background (age, gender)

Model Building

• Activity selection
• Data balancing
• Normalizing
• Classification algorithms

Model Evaluation

• 75%/25% train/test split
• Accuracy, F1-score, AUC
• Division: Young vs Old,       

Male vs Female

Predicting time use activities from the accelerometer data

Random Forest
XGBoost best performance
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Predictive power

Activity Set size Participants Precision Recall F1-score
1. Social or religious activities and hobbies 2036 333 68 % 54 % 61 %
2. Farming 2036 199 75 % 77 % 76 %
3. Cook or prepare food or drinks 2036 239 56 % 69 % 62 %
4. Travelling and commuting 2036 316 80 % 55 % 65 %
5. Eating and drinking 2036 380 68 % 55 % 61 %
6. Resting 2036 234 77 % 75 % 76 %
7. Hunt or gather foodstuffs 2036 149 79 % 86 % 82 %
8. Personal care 2036 345 91 % 67 % 77 %
9. Clean the house, wash, or iron 2036 170 79 % 93 % 86 %
10. Fetch water 2036 179 78 % 93 % 85 %
11. Work for a wage or salary 2036 37 89 % 99 % 94 %
12. Running or working in household business 2036 40 85 % 99 % 92 %
Accuracy 77 %
Macro average F1-score 76 %

Yes, we can predict activities with high accuracy

A random guess has a prediction score of 100/12 = 8.3 %
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Confusion Matrix

A confusion 
matrix nicely 

highlights which 
misclassifications 

there are 
between 

predicted and 
actual activities

A clear misclassification 
is for example between 
“Eating” and “Cooking” 
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Influence of variables

Background 
variables are:

Gender
Age

Weight
Day of week
Time of day

Background variables improve predictive power
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Applying the model
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What’s Next
Can we do better and 
improve models?



New data collection in Malawi  (2022/2023)
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• High-frequency sensor data (60 Hz)
• Larger sample size (N=1,440)
• More activities
• Two types of time use: 24h-recall & 

smartphone diary
• Deep learning models

• Activity pop-ups:
• Type of food?
• With whom?
• Affect: how do you feel?

Improve data quality model prediction Experience sampling 



Questions?
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Alberto Zezza azezza@worldbank.org
Joris Mulder joris.mulder@centerdata.nl
Talip Kilic tkilic@worldbank.org
Pradeep Kumar pradeep.kumar@centerdata.nl
Seyit Höcük seyit.hocuk@centerdata.nl
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Validation
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Applying the model
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Zero Hunger Lab

UN Sustainable Development Goal 2 (SDG-2): Zero Hunger
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Activity Recognition

Farming Social activities Fetching water

Human Activity Recognition (HAR) 

Time Use Activity Recognition (TAR)
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Resultaten
Generaliseerbaarheid model

Er is een sterke afhankelijkheid tov het aantal participanten
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Gender wise differences
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Gender wise differences

But there are underlying 
differences in the number 
of participants, especially 
male and female
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Gender wise differences

No significant differences in the predictions for men and women
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