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Living Standard Measurement Study LSMSDﬁ@]

Measurement Study

 Face-to-face time-use survey in rural areas
» 24 hour recall-based diary, weekly visits
* Very costly

Goal: alternative data collection for LSMS

 Physical activity trackers (ActiGraph)
* 14 consecutive days, N=415 (15+years)
« Cheaper, more accurate and objective data



Human Activity Recognition (HAR)
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Research question

Can advances in machine learning be leveraged to
accurately predict time use from physical activity
sensor output collected as part of household surveys
In low-Income countries?

- Can we predict time use activities from
accelerometer data?



Two Types of Data

ActiGraph GT3X Time Use Survey
measures acceleration 25 activities

MODULE : TIME ALLOCATION

PLEASE RECORD A LOG OF THE ACTIVITIES FOR THE INDIVIDUAL IN THE LAST COMPLETE 24 HOURS (STARTING YESTERDAY MORNING AT 4 AM, FINISHING 3:59 AM OF THE
CURRENT DAY). THE TIME INTERVALS ARE MARKED IN 15 MIN INTERVALS. MARK ONE PRIMARY ACTIVITY FOR EACH TIME PERIOD BY ENTERING THE CORRESPONDING ACTIVITY
CODE IN THE BOX. A SECONDARY ACTIVITY (OPTIONAL) CAN BE ENTERED IN CASE OF SIMULTANEQUS ACTIVITIES.

THIS FORM MUST BE ADMINISTERED TO THE RESPONDENT HIMSELF/HERSELF DURING THE 2% AND 3% VISITS TO THE HOUSEHOLD.

Now I'd like to ask you about how you spent your time during the past 24 hours. We'll begin from yesterday moming, and continue through to this moming. This will be a detailed accounting. Fm

interested in everything you did (i.e. resting, eating, personal care, work inside and outside the home, caring for children, cooking, shepping, socializing, efc.), even if it didn't take you much time.
Moming Day

4:00 5:00 6:00 7:00 800 9:00 10:00 11.00 12:00 13:00 14:00 15:00

1. Primary Activity (WRITE ACTIVITY CODE)
2. Secondary Activity (WRITE ACTIVITY CODE)

3. Primary Activity (WRITE ACTIVITY CODE)
4. Secondary Activity (WRITE ACTIVITY CODE)

+
ACTIVITY CODES
A Sleeping and resing E....... Work for a wage, salary, commission or in-kind payment | N...........Cook or prepare food or drinks to preserve them | U......Plan the household's finances or bills
B. i (incl. ganyu, paid apprenficeships) | O.................... Collect firewood or ofher natural products | V.......... e Traveliing and commuting
C Frereeereens Run, work or help in a non-agricultural and non-fishing Fetch water from natural or public sources | W....Watching TV/listening to radio‘reading
D household business | Q..o Clean the house, wash oriron | X.........coccoooeicciiiinnne..... Exercising
G...Work for other households free of charge as exchange laborer | R.Household maintenance or own construction work (e.g. | Y...Social or religious activities and hobbies
H. to renovate, extend or build the household's dwelling) | Z... ........... R eevesmestestonssansned Other
I. S...........[Provide care or assistance to adults (18+ years)
Jo. T. Look after children (17 years or younger)
K
L ...Buy food or other items or obtain services
. ...Make goods (furniture, pottery. baskets. clothing)




Time use data

Distribution of activitities

Social or religious activities
Farming

Cook or prepare food
Travelling and commuting
Eating and drinking
Resting

Hunt or gather foodstuffs
Personal care

Clean the house

Fetch water

Work for wage

Household business
School

Buy food or other items
Look after children

Collect firewood
Household construction work
Livestock

Make goods

Tv, radio, reading
Other

Provide care to adults
Exchange laborer
Exercising

Fishing
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Building machine learning models

Predicting time use activities from the accelerometer data

Random Forest
XGBoost > best performance

Model building pipeline

Preprocessing Data Cleaning Feature Engineering | Model Building

e Coupling accelerometer e Removal of non-wear time | * 39 features, i.e., e Activity selection
data with time-use data o Excluding 2" activities 4 base features (X, Y, Z, Step), | o Data balancing

* Enhancing with available | e Time limit (4 am-10 pm) 31 derived features,  Normalizing

background information 4 background (age, gender)

e Discard correlated vars e Classification algorithms

Model Evaluation

® 75%/25% train/test split
* Accuracy, F,-score, AUC

e Division: Young vs Old,
Male vs Female




Predictive power

aciie Setsize Paricpans  Precision | Recall | F-score _

1. Social or religious activities and hobbies 2036 68 % 54 % 61 %
2. Farming 2036 199 75 % 77 % 76 %
3. Cook or prepare food or drinks 2036 239 56 % 69 % 62 %
4. Travelling and commuting 2036 316 80 % 55 % 65 %
5. Eating and drinking 2036 380 68 % 55 % 61 %
6. Resting 2036 234 77 % 75 % 76 %
7. Hunt or gather foodstuffs 2036 149 79 % 86 % 82 %
8. Personal care 2036 345 91 % 67 % 77 %
9. Clean the house, wash, or iron 2036 170 79 % 93 % 86 %
10. Fetch water 2036 179 78 % 93 % 85 %
11. Work for a wage or salary 2036 37 89 % 99 % 94 %
12. Running or working in household business 2036 40 85 % 99 % 92 %
Accuracy %

Macro average F,-score

A random guess has a prediction score of 100/12 = 8.3 %

Yes, we can predict activities with high accuracy —-




Confusion Matrix

Confusion matrix

100%
Resting 03% 2.7% 1.0% 2.0% 0.7% | 54% 19% 2.7% 3.1% 2.0%
Farming - 3.7% 2.3% 4.2% 0.7% 2.8% 20% 2.3% 28% 0.8%
. Personal care 4 30% 31% 24% 15% 23% 1.8% | %1% 28% 29% 28% 3.1%
A confusion
. . i - 06% 0.6% 0.1% 05% 0.0% 24% 12% 02% 11% 02%
matrix nicely Cleaning

1 1 1 -E-? i 2.9% 0.8% 5.1% 3.8% @ 6.2% 2.6% 6.1% 4.4% 3.5%
highlights which £ Travelling 4 29% % 6 3ov [ 26% JEEEE 4% 35%

m|SCIaSS|f|Cat|0nS "8' Fetching water 4 02% 04% 00% 1.6% 03% 23% 09% 00% 05% 03% 100/

B 0
there are © Work for wage - 00% 00% 00% 00% 00% 0.0% 00% 0.0% 00% 0.0%
-}
between g Cooking - 3.0% 17% 10%  56% 13% 55% 54% 26% 37% 1.3%
predicted and .
L. Huntlng -4 07% 18% 04% 10% 13% 17% 0.7% 11% 1.6%
actual activities
Social, religious - 43% 3.6% 27% 23% 44% 3.0% 23% 6.2%
Eating -4 59% 31% 11% 25% 14% 25% 21%
Household work = 00% 00% 00% 00% 00% 00% 00% 00%
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Influence of variables

Predictive power

80

70 -

60 - Background
S variables are:
= 501 Gender
S : Age
£ 40 Weight
- Day of week

30 A Time of day

/ —— full model
204 / —-= pure background
/ === pure sensor signal
10 . r , T
0 20 40 60 80 100

Dataset size (%)

Background variables improve predictive power —-
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Distribution of time spending by gender
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What's Next

Can we do better and
improve models?
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New data collection in Malawi (2022/2023)

Improve data quality model prediction Experience sampling

© ATEre R

» High-frequency sensor data (60 Hz)

» Larger sample size (N=1,440)

* More activities

» Two types of time use: 24h-recall &
smartphone diary

* Deep learning models

Kupalira ndi manja | ithira fetereza/man

& | 2.

« Type of food? | :

e With whom? “ gp—— i O <

» Activity pop-ups:

HR

« Affect: how do you feel?



- THE

O
WORLD A [
BANK LSMSDD@J

Questions?

Alberto Zezza azezza@worldbank.org

Joris Mulder joris.mulder@centerdata.nl
Talip Kilic tkilic@worldbank.org
Pradeep Kumar pradeep.kumar@centerdata.nl
Seyit HocUk seyit.hocuk@centerdata.nl
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Zero Hunger Lab Tisurs o J » Unvessiry

UN Sustainable Development Goal 2 (SDG-2): Zero Hunger —-
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Activity Recognition

Social activities Fetching water

Tanzania

Zambia :
Lake Malawi

Human Activity Recognition (HAR)

|

Time Use Activity Recognition (TAR)

Mozambique
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Resultaten {CENTERDATA
Generaliseerbaarheid model

. research institute

Prediction score versus participant diversity
100

y=94.4-0.09x
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Numer of unique participants

Er is een sterke afhankelijkheid tov het aantal participanten -— -
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Prediction score (%)

Gender wise differences

Gender wise unscaled prediction scores per activity
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But there are underlying
differences in the number
of participants, especially
male and female
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ise differences

Gender w

N participants
100

Scaled score = F, score + 9% X

Gender wise scaled prediction scores per activity
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