Dat.mobility

ADVANCING ANALYTICS

Netherlands Travel Panel (NVP)

- Started in 2019, data-collection through smartphones
- Recruited from the Kantar panel (100,000 participants)
- Smartphone app developed by Mobidot, launched in 2013
- Travel information collected 24/7 and GDPR proof
- Panel members receive incentive to participate

Goal

Create and maintain a large-scale, detailed, longitudinal, continuous data source to improve decision making on mobility issues

Netherlands Mobility Panel (NVP)

"Unobtrusive" data collection:

- Automatic trip, stay and mode detection
- Automatic activities/trip purpose derived
- Map matched routes
- Monthly ± 10,000 participants, total 23,000
- DB contains 5M trips

Characteristics:

- Continuous and real-time
- Longitudinal
- Representative sample
- Survey options

Information on trips

Speed	Street	Costs	Time
Distance	Waytype	Points on route	Quality
Modality	Postal code	OSM ID	Accuracy
Start (lat/lon)	City	Name road	Direction
End (lat/lon)	Stay patterns	Road type	Reliability
Purpose	Country	Next node	
Weather	Province	Lat/Lon	

Information panel members

Individual level

Gender

Age

Education

Occupation

Driver's License

Residential location

Household level

Income

Size

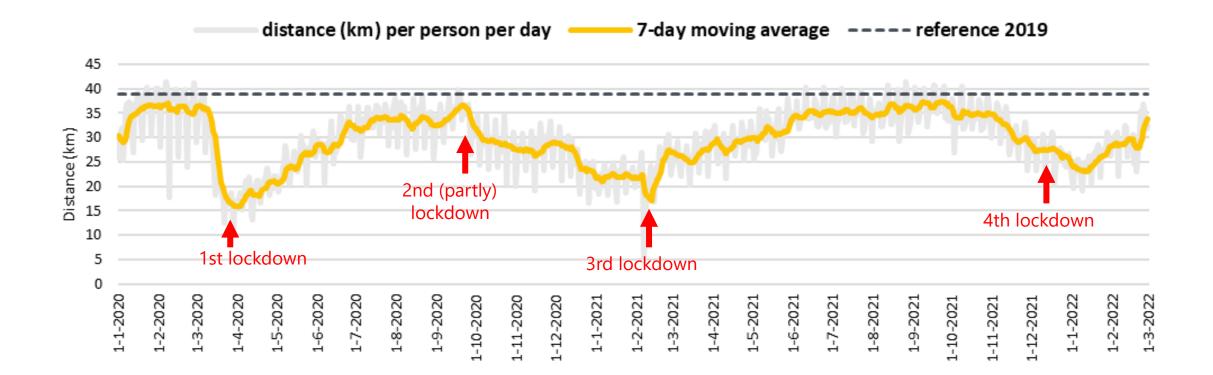
Composition

Car ownership

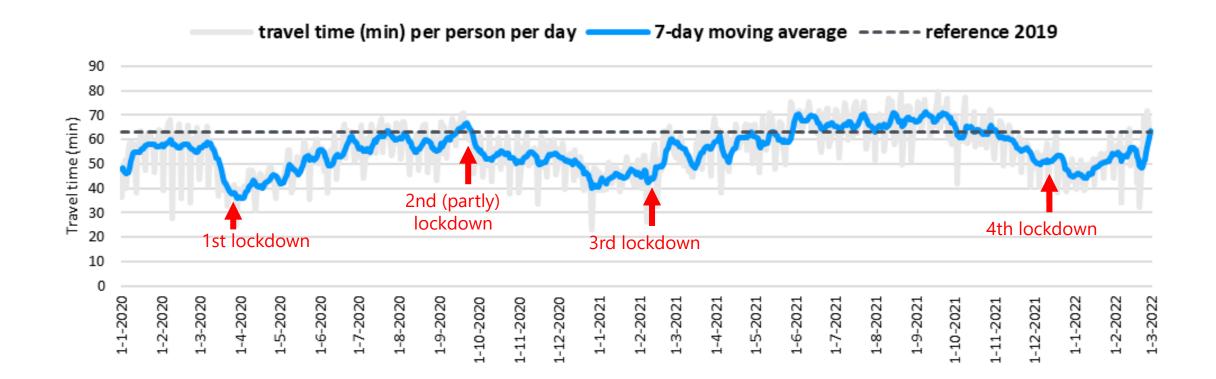
Representativeness of the sample

Variable	Categories	Sample	Sample	Sample	Popula-	
		March	May	August	tion	
Gender (%)	male	46.8	46.8	47.5	49.7	
	female	53.2	53.2	52.8	50.6	
Age (%)	16-24	2.0	1.8	2.1	13.5	
	25-44	33.7	35.8	33.4	29.9	
	45-64	44.0	42.3	44.6	34.3	
	≥65	20.3	20.0	19.9	22.3	
Urban Density	low(<500)	9.2	9.1	8.9	7.8	
– inhabit-	medium (500-1500)	38.2	38.2	37.8	37.2	
ants/m ² (%)	high (>1500)	52.6	52.7	53.3	55.0	
Education (%)	low	20.9	19.9	20.1	22.2	
	medium	41.1	41.8	40.7	41.1	
	high	38.0	38.3	39.2	36.7	
Main occupa-	unemployed	32.5	32.0	31.2	38.1	
tion (%)	employed	66.0	66.5	67.0	54.4	
	student	1.5	1.5	1.8	7.5	
Household	1 person	19.8	19.2	19.0	21.1	
size (%)	2 persons	41.7	41.7	42.8	35.7	
	>2 persons	38.5	39.1	38.1	42.9	
Household	single	19.8	19.2	19.0	21.1	
composition	family with children ≤12 yr	21.7	22.7	21.5	20.2	
(%)	family with children >12 yr	7.8	8.1	8.2	10.0	
	multiple adults	50.7	50.1	51.3	48.6	

Ta	ble 1. S	Socioc	lemograp	hic c	haracteri	istics o	of th	e sample	


Monitoring impact COVID-19 pandemic

Dynamic impact first lockdown (animation)



MASS workshop - 10 July 2023

Day-to-day mobility patterns - distance

Day-to-day mobility patterns – travel time

Post COVID-19 teleworking and car use intentions

Transportation Research Interdisciplinary Perspectives 12 (2021) 100498

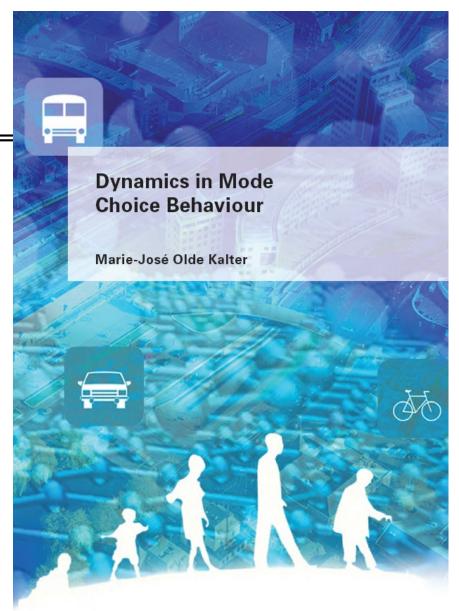
Contents lists available at ScienceDirect Transportation Research Interdisciplinary Perspectives

journal homepage: www.sciencedirect.com/journal/transportation-

research-interdisciplinary-perspectives

Post COVID-19 teleworking and car use intentions. Evidence from large scale GPS-tracking and survey data in the Netherlands

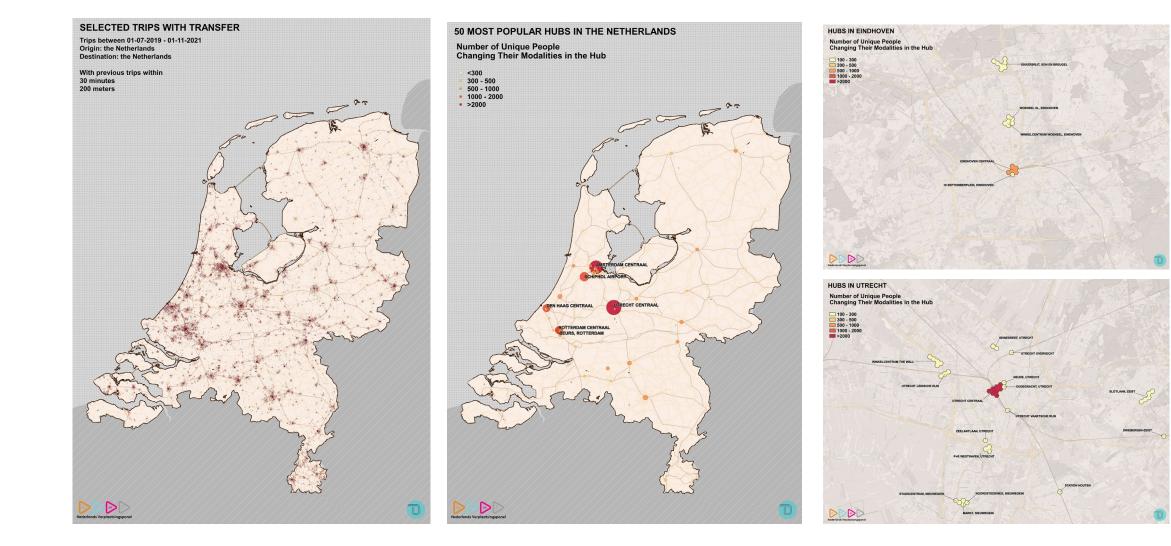
Marie-José Olde Kalter^{a,b,*}, Karst T. Geurs^a, Luc Wismans^{a,b}


^a Department of Civil Engineering, Faculty of Engineering Technology, University of Twente, P.O Box 217, 7500 AE Enschede, The Netherlands ^b Goudappel B.V, P.O. Box 161, 7400 AD, Deventer, The Netherlands

ARTICLE INFO

Keywords: COVID-19 Travel behaviour Teleworking Survey GPS-tracking

ABSTRACT


This study examines the changes in teleworking during the lockdown in April 2020 and the intention to change commuting behaviour after COVID-19 in the Netherlands. Survey data of 1,515 Dutch employees and large-scale smartphone-based GPS-data of the same participants before and during COVID-19 is used. The probability of increasing teleworking during COVID-19 is estimated using an ordinal logistic regression model, considering sociodemographic characteristics, the initial travel behaviour and the initial work situation as determining factors. Two binary logistic regression models are developed to analyse whether employees expect to continue teleworking after the COVID-19 pandemic and whether they will decrease car use for commuting. Both models consider teleworking and car use intentions in the context of behavioural changes during COVID-19. The main factors that influenced teleworking during the lockdown are job characteristics. Office workers and teaching staff were more likely to increase the amount of time spent working from home and showed a higher chance of changes in daily commuting routines. After COVID-19, office workers expect to increase teleworking. The results suggest that employees with a relatively large change in teleworking during the early lockdown expect to work from home more frequently after COVID-19. This effect is strengthened further by positive experiences with teleworking (i.e. more pleasure and higher productivity) and supporting policy measures by the employer, such as sufficient ICT facilities. The main conclusion related to intended changes in mode choice is that car use for commuting is expected to decrease after COVID-19, mostly because of an increase in teleworking.

https://research.utwente.nl/en/publications/dynamics-in-mode-choice-behaviour

Data driven identification of hubs

12

Dashboards: monitoring & evaluation

Challenges

- How do we optimally open up these data
- for clients (transport authorities etc.)?
- for researchers?

- for our own consultants?
- How do we cover the operational costs in the long run?

ADVANCING ANALYTICS